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New electromagnetic surface waves:
Voigt surface waves
By Tom G. Mackay, Ph.D., School of Mathematics, University of Edinburgh
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Conventional electromagnetic surface waves
The simplest (nontrivial) solutions to the Maxwell equations
are uniform plane waves, familiar to all students of 
electromagnetic theory. In the simplest case, these propagate
in a linear homogeneous material that extends to infinity
in all directions. 

Surface waves are quite different. These are localised waves
that straddle the planar interface of two dissimilar partnering
materials1. The energy density of a surface wave far away
from the interface is negligibly small. If the interface is 
removed by making the two partnering materials identical,
the surface wave disappears. In addition, there is no 
guarantee that a selected pair of partnering materials will
support the existence of a surface wave – the parameters
specifying the electromagnetic characteristics of both 
partnering materials may be required to satisfy certain 
constraints in order for a surface wave to exist. Thus, surface
waves are much more delicate entities than plane waves.

Surface-plasmon-polariton waves
Since the beginning of the twentieth century, several 
different types of electromagnetic surface wave have been
identified. The type is determined by the electromagnetic
characteristics of the two partnering materials. The most
widely studied type is the surface-plasmon-polariton (SPP)
wave which is guided by the interface of an insulator and 
a metal. While SPP waves cannot be excited by direct
illumination, their excitation is readily achieved indirectly 
via coupling with a prism or surface-relief grating, for 
examples. SPP waves are of major technological importance:
they have been widely exploited for sensing chemical and
biochemical substances.
Another major area of application is in microscopy; and 
further applications in optical communications and solar 
energy harvesting are on the horizon. As metals absorb 
electromagnetic energy, SPP waves travel only relatively
short distances. 

Dyakonov waves
Another type of surface wave – well established both 
theoretically and experimentally – is the Dyakonov surface
wave, which propagates at the interface of two insulators. 
At least one of the partnering materials must have 
electromagnetic characteristics that vary with the direction
of propagation – such materials are called anisotropic. 
Unlike other types of surface wave, such as SPP waves,
Dyakonov surface waves can propagate over quite large 
distances; accordingly, they represent attractive propositions
for applications involving long-range optical communications,
for example.

Voigt surface waves
Our understanding of electromagnetic surface waves took 
a step forward recently when a fundamentally new type 
of surface wave, known as a Dyakonov–Voigt (DV) surface
wave2, emerged as the solution to a canonical boundary-
value problem involving the interface of two insulators. 
One of the partnering materials is isotropic while the 
other is anisotropic. These DV surface waves are similar to
Dyakonov surface waves insofar as they are guided by the
interface of two insulators, but there are crucial differences:
(i) The fields of DV surface waves decay as the product of 
a linear and an exponential function of distance from the
interface in the anisotropic insulator, whereas the fields 
of Dyakonov surface waves decay only exponentially with 
distance from the interface in the anisotropic insulator.
(ii) DV surface waves propagate only in four distinct 
directions in the interface plane whereas Dyakonov surface
waves propagate for four continuous ranges of directions.

In a related study, another new type of surface wave, namely 
a surface-plasmon-polariton-Voigt (SPPV) wave3, recently
emerged as the solution to a canonical boundary-value 
problem involving the interface of an anisotropic insulator
and a metal. The relationship between SPPV waves and SPP
waves is analogous to the relationship between DV surface
waves and Dyakonov surface waves.
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Theory underpinning electromagnetic 
surface waves
The properties of conventional and Voigt surface waves are 
most easily appreciated by considering the planar interface
z = 0 of two unbounded regions: z > 0 filled with material 
A and z < 0 filled with material B. Suppose that material A
is anisotropic while material B is isotropic. For DV surface
waves both partnering materials are insulators whereas for
SPPV waves one of the partnering materials is an insulator
and the other is a metal. The propagation of surface waves
is governed by the Maxwell equations. In fact, only the two
Maxwell equations involving the curl operator are needed. 

These Maxwell equations are conveniently recast as a matrix
of ordinary differential equations

(1)

where the vector [f (z)] has 4 components: the amplitudes 
of the x and y components of the electric field and the 
amplitudes of the x and y components of the magnetic field.
The 4 x 4 matrices and         are specified by the 
electromagnetic characteristics of materials A and B, 
respectively.

Let us consider the simplest case. For conventional surface
waves, like SPP and Dyakonov surface waves, the matrix
has four eigenvalues and four linearly independent 
eigenvectors. Consequently, the field amplitudes of the 
surface waves decay exponentially as z increases in the region
z > 0. 

For Voigt surface waves, the matrix      has fewer than four
eigenvalues and fewer than four linearly independent 
eigenvectors. Consequently, the decay of surface-wave field
amplitudes as z increases in the region z > 0 is governed by
the product of a linear function of z and an exponential 
function of z.

For both conventional and Voigt surface waves, the matrix
has four eigenvalues and four linearly independent 
eigenvectors; and accordingly the surface-wave field 
amplitudes decay exponentially as z decreases in the 
region z < 0.

Schematic representations
Schematic representations of conventional and Voigt surface
waves are provided in Fig. 1. For the conventional surface
wave represented in Fig. 1 (top), the surface wave is tightly 
localised at the interface and the field magnitude decays 
exponentially in both directions as distance from the 
interface increases. Generally, the rate of decay in material 
A is different to the rate of decay in material B. In contrast,
for the Voigt surface wave represented in Fig. 1 (bottom), 

the surface-wave field magnitude decays exponentially in 
material B but the form of decay in material A is quite 
different as it is specified by a linear-exponential function 
of distance from the interface. Accordingly, the energy 
density of a Voigt surface wave is not concentrated exactly 
at the interface but at a some distance – which may be 
short or considerable depending on the electromagnetic 
characteristics of materials A and B – from the interface in
the z > 0 region. That is, Voigt surface waves are localised to a
neighbourhood of the interface, but their localisation is quite
different to that of conventional surface waves, because of
their differently distributed energy densities.

Figure 1: Schematic representations of a conventional surface
wave (top) and a Voigt surface wave (bottom). Field magnitudes 
are graphed against distance from the interface. The decay for 
the conventional surface wave is exponential in materials 
A and B; and the decay for the Voigt surface wave is exponential
in material B but linear-exponential in material A.
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Voigt plane waves
There are certain features shared by Voigt surface waves,
namely DV surface waves and SPPV waves, and a special
type of plane wave called a Voigt plane wave, named 
after the German physicist Woldemar Voigt (See Fig. 2). 
As for Voigt surface waves, anisotropy is essential for the 
existence of Voigt plane waves. These plane waves propagate
in certain dissipative anisotropic insulators4. In general, 
two plane waves propagate in a given direction in such 
materials, with each plane wave being associated with 
a distinct wavenumber and eigenvector. Each plane wave 
decays exponentially in the direction of propagation. 

But there exist special directions of propagation – distinct
from the directions aligned with the optic axes – along which
both plane waves have only one wavenumber and their
eigenvectors are not distinct from each other either. 
For these propagation directions, the two plane waves 
coalesce to form a Voigt plane wave. Furthermore, the decay
of Voigt plane waves in the direction of propagation is not
simply exponential; instead their decay is governed by the
product of a linear function and an exponential function 
of propagation distance. Voigt plane waves were first
investigated experimentally and theoretically for pleochroic
crystals (i.e. crystals that appear to be of different colours
when viewed from different directions) but in recent times
interest has grown in engineered materials that permit Voigt
plane-wave propagation.

Why are Voigt surface waves particularly
interesting?
Plane waves, spherical waves and surface waves, arising as 
solutions to the Maxwell equations, are the well-established
basic building blocks for much of applied electromagnetic
theory.

Fundamentally new types of wave solution to the Maxwell
equations are exceedingly rare. Therefore, the recent 
emergence of DV and SPPV surface waves, with their unique
localisation characteristics, marks a significant milestone.

As well as their importance for fundamental research, 
Voigt surface waves appear promising for technological 
applications. Potentially, Voigt surface waves offer an 
additional operational mode for applications in optical 
sensing and applications in optical communications, 
for examples. Moreover, owing to their unique localisation,
the additional mode offered by Voigt surface waves is 
generally not in the same spatial location as the conventional
surface-wave mode. Thus, the prospect of parallelizing 
applications of surface waves emerges. For examples, (a) in
optical communications, a signal ‘0’ could be transmitted by
a conventional surface wave while a signal ‘1’ could be 
transmitted by a Voigt surface wave; and (b) in optical 
sensing, the presence of a substance-to-be-sensed could 
be signalled via a Voigt surface wave while the presence 
of a different substance-to-be-sensed, at a nearby but 
different location, could be signalled via a conventional 
surface wave. 

Further research
However, further research on the excitation of Voigt 
surface waves in practical settings, such as involving 
prism- or grating-coupled configurations with realistic
materials, is required before applications can be pursued
in earnest.

g4 W. Voigt, Phil. Mag. 4, 90–97 (1902).

Figure 2: Woldemar Voigt (born Leipzig 1850, died Göttingen
1919), head of Mathematical Physics Department at the Georg
August University of Göttingen, renowned for his work on 
crystal physics and electro-optics. Photograph courtesy of
Emilio Segrè Visual Archives, American Institute of Physics.



James Clerk Maxwell Foundation, 14 India Street, Edinburgh EH3 6EZ. The birthplace in 1831 of James Clerk Maxwell.

www.clerkmaxwellfoundation.org
Scottish Charity:  SC 015003 Printed courtesy of Leonardo

Tribute to Professor David S. Ritchie, MA FRMetS FRSE
(1923–2020)
By Trustees of the Clerk Maxwell Foundation

Till, in  the twilight of the gods,
When earth and sun are frozen clods,
When, all its energy degraded,
Matter to aether shall have faded,
We, that is, all the work we’ve done,
As waves in aether, shall for ever run,
In ever-widening spheres though heavens beyond the sun.

Extract from  the  poem ‘A Paradoxical Ode’  
by James Clerk Maxwell.

The Clerk Maxwell Foundation was formed in 1977
to honour and promote the memory and scientific 
contributions of James Clerk Maxwell, Scotland’s 
most eminent physicist. 

In 1987, David Ritchie was approached by our founder,
Sidney Ross, to become a Trustee of the Clerk Maxwell
Foundation. He was a trustee of the Foundation for
thirty-two years and for part of this period he was our
Chairman and later our Honorary President. The 
portrait of David (on the right) now hangs in the 
Foundation’s rooms. David passed away peacefully
in September of this year.

David Ritchie was educated at the Edinburgh 
Academy and at Cambridge University, as was Clerk
Maxwell. David studied engineering. After serving in
World War II, he joined, in 1948, the Glasgow company
Bar and Stroud becoming, in due course, its Research
Director. Although his primary work was with 
submarine periscopes and their ability to exploit all
parts of the electromagnetic spectrum, he was also
involved with the development of rangefinders and
night-sights. After he retired from Barr and Stroud in
1986, David became a governor at Paisley University
and Visiting Professor in Management Technology
Innovation at Strathclyde University.

In 1993, David, as the Director of Development of the
Maxwell Foundation, took on, with the assistance of
other trustees, the task of raising £500,000 to enable the
Foundation to buy the town house in the New Town of
Edinburgh (14 India Street) where James Clerk Maxwell 

was born. David gave a significant personal gift to help
the Foundation to buy the house. Furthermore, David
and Professor Elmer Rees secured a substantial interest
free loan from the Scottish Office for the same purpose.
He worked tirelessly in writing many letters to 
individuals, trusts and charities to seek contributions
and, with assistance from other trustees, succeeded
in raising the necessary funds to buy 14 India Street 
and thereby firmly established Maxwell’s legacy in 
Edinburgh.

Buying the house, where Maxwell was born, 
was acknowledged by the Founder of the Maxwell 
Foudation, Sydney Ross, as being a ‘master-stroke’. 
Sydney Ross acknowledged that, without David 
working to help to raise the money to buy the house,
the Foundation would only have ever existed on paper.
The purchase of the house has had a transformative 
effect on the Foundation.

David Richie was elected a Fellow of the Royal Society
of Edinburgh in 1997. He donated to the Royal Society
of Edinburgh a fine portrait of Clerk Maxwell which
now hangs in the Society’s ‘Maxwell Room’ along with 
a hologram of the Maxwell statue which is located 
near the Society’s premises.
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