
Page 1 of 37

The following Smith’s Prize Examination was set by James Clerk 
Maxwell in 1879 when he was Cavendish Professor at the University of 

Cambridge.  Maxwell died in November of that year. 

Historical Note:- Robert Smith (1689-1768) after whom the Prizes are named, was Plumian 
Professor of Astronomy from 1716-1760 and Master of Trinity from 1742. The Smith’s Prizes 
(two) of 1879 were shared equally by M.J.M. Hill (5th Wrangler) who became the Professor of 
Pure Mathematics at University College, London and A.J. Wallis (6th Wrangler) who became a 
Fellow and Tutor at Corpus Christi College Cambridge although A.J. C. Allen was the Senior 
Wrangler. The exam was also sat by Karl Pearson, FRS (3rd Wrangler) who also became a 
professor at University College, London and who describes taking the examination in 
Maxwell’s dining room in an article entitled Old Tripos Days at Cambridge, as seen from 
another viewpoint (Mathematical Gazette, 20 (1936)) and who did best on Maxwell’s paper. 
There is evidence from what Karl Pearson says that, as Maxwell was normally thoughtful, 
considerate and kind, Maxwell was already suffering from the stomach cancer that was to kill 
him a few months later. Karl Pearson coined the phrase ‘standard deviation’ in 1893.

Maxwell, who was a former pupil of the Edinburgh Academy, himself sat for the Smith’s 
Prizes in 1854 being declared equal first with Routh. The 1854 question paper contains as a 
question in vector analysis which has now become known as Stokes’ Theorem (although it 
was first proved by Lord Kelvin and communicated to Stokes by Kelvin in a letter of 2 July 
1850 and should be known by Kelvin’s  name). Since Maxwell said later “It (i.e. the result) 
was not entirely new to yours truly” we can suppose that Maxwell solved it in the exam room.
Maxwell was not to know then the vital role which Stokes’ Theorem was to play in enabling 
him to ‘mathematise’ Faraday.

The James Clerk Maxwell Foundation is grateful to :-

Dr. Jovan Jevtic is Assistant Professor at the Milwaukee School of Engineering, USA who 
solved many of the problems - his webpage is at Dr. Jovan Jevtic

Ra�l A. Sim�n is from Santiago, Chile (see Questions 1 and 6)

Diego Sevilla is from Santa Fe, Argentina (see Question 12)

Winifred Sillitto, is former member Applied Optics Group, University of Edinburgh, webpage 
at Winifred Sillitto

Douglas Essex is at College of Optical Sciences, University of Arizona, U.S.A. webpage 
College of Optical Sciences (see Question 9)

J. Stewart Fowlie is ex. Christ’s College Cambridge, and former Mathematics Master at 
Edinburgh Academy has made contributions to the Mathematical Gazette, see, for example, 
The Mathematical Association - supporting mathematics in education

Martin Baxter is ex. Pembroke College, Cambridge and former pupil of Daniel Stewart’s 
College, Edinburgh webpage at Martin Baxter (see Question 3)

David Forfar is a Trustee of the above Foundation, ex. Trinity, Cambridge and former pupil of 
Edinburgh Academy, webpage David O Forfar

Comments on the Fluid Dynamics (questions 10 and 12) have been given by Professor H.K. 
Moffatt, FRS, FRSE the Professor of Fluid Dynamics at the University of Cambridge and 
former Director of the Isaac Newton Institute and former pupil of George Watson’s College 
Edinburgh, webpage Keith Moffatt

http://myweb.msoe.edu/~jevtic/
http://www.sillittopages.co.uk/
http://www.optics.arizona.edu/News/2007Newsletters/06-21-07.htm
http://www.m-a.org.uk/resources/periodicals/the_mathematical_gazette
http://www.martinbaxter.co.uk/
http://www.davidforfar.com/
http://www.damtp.cam.ac.uk/user/hkm2/
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WEDNESDAY, January 29, 1879

By J. CLERK MAXWELL, PROFESSOR OF EXPERIMENTAL PHYSICS.
(Trinity College, Cambridge)

Question 1: IF in a plane AB = CD, and if P be the intersection of the lines which bisect AC
and BD perpendicularly, Q that of the lines which bisect AD and BC perpendicularly, and R
the intersection of AB and CD, show that PR and QR are the interior and exterior bisectors of 
the angle ARC.

Solution by David Forfar 

The triangles PAB and PCD have three equal sides and are therefore congruent. The 
quadrilateral PRBD is cyclic as PR subtends equal angles at the circumference. The angle 
PRD is therefore equal to PBD. The complement of the angle PRB (i.e. 180o minus the angle) 
is equal to the angle RBP plus the angle RPB and the latter is equal to angle RDB and using 
the congruent triangles we have angle RBP equal to RPD. 
Thus the complement of the angle PRB is equal to the angle PDB and because of isosceles 
triangles we have angle PBD equal to PDB. The other case is similar.

Solution by Ra�l Sim�n

The triangles PAB and PCD have three equal sides and are therefore congruent. Drop 
perpendiculars from P onto the two lines BAR and DCR and let the foot of these 
perpendiculars be E and F respectively. The triangles PED and PFD are congruent (two 
angles and the enclosed side) so PE and PF are of equal length. Thus P is on the internal 
bisector of angle DRE. In the other case the triangles QAB and QCD are congruent therefore 
the perpendiculars from Q onto the two lines BAR and DCR are of equal length so that Q 
bisects the angle ARD.

Question 2. Three points A, B, C on a straight line correspond homographically to three 
points a, b, c on another straight line: give a geometrical construction to determine the point 
on either line which corresponds to a point at an infinite distance on the other.
Four points A, B, C, D, of which no three are in a straight line, correspond homographically to 
four points a, b, c, d: prove the following construction for finding the equiangular foci of the 
two figures, at which corresponding lines subtend equal angles.—Let Y, Z, y, z be the 
vanishing points on the lines AC, AB, ac, ab respectively; on YZ describe the triangle ZF1Y
similar to zay, and on yz describe the triangle zf1y similar to ZAY, then F1 and f1 are the 
positive equiangular foci, and their images in YZ and yz respectively are the negative foci.

Solution by Jovan Jevtic

Construction. To find the vanishing point on the line ABC : translate the line abc to ' ' 'a b c
such that the point 'c coincides with C ; let O be the point of intersection of the lines 'Aa
and 'Bb ; then a parallel to the line abc drawn through the point O intersects the line ABC
at the desired vanishing point.

Proof. Let X be the point on the line ABC as constructed and let i be a point at an infinite 
distance on the line abc . To prove that the point X corresponds homographically to the 
point i , it suffices to prove the equality of the cross ratios of the points , , ,i a b c and 

, , ,X A B C , because the cross-ratio of four collinear points is an invariant of homography. 
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Consider the pencil of rays ', ', ', 'Oi Oa Ob Oc where 'i is a point at an infinite distance on 
the line ' ' 'a b c . The line ABC intersects the rays at the points , , ,X A B and C , 
respectively, and the equality of the cross-ratios on the common pencil of rays gives:

' '

' ' ' ' ' '( , , , ) lim
' ' ' ' ' 'i a

XA BC i a b c b cX A B C
XC AB i c a b a b

 
  

 
(2.1)

On the other hand, the cross-ratio of the points , , ,i a b c is equal to:

( , , , ) lim
ia

ia bc bci a b c
ic ab ab


 


(2.2)

But ' 'b c bc and ' 'a b ab by construction, proving the equality of the cross-ratios
(2.1) and (2.2) and the homographic correspondence of the points X and i . 

Key Proportions.  Consider an arbitrary point Q and its corresponding point q . Let X and 
x be the vanishing points on the lines AQ and aq , respectively. Let I and i be the points 
at an infinite distance on the lines AQ and aq , respectively. Then the points , , ,X A Q I
correspond homographically to the points , , ,i a q x , implying the equality of the cross-ratios:

lim lim
AI ai

XA QI ia qx XA qx
XI AQ ix aq AQ aq 

 
  

 
(2.3)

Furthermore, the vanishing points X and x must lie on the straight lines YZ and yz , 
respectively, because the locus of the vanishing points is a straight line. Let W and w be the 
points at an infinite distance on the lines XYZ and xyz . It is easy to show that 
w corresponds homographically to W . Consider the corresponding pencils of rays 

, , ,AW AQ AC AB and , , ,aw aq ac ab . Since the collinear points , , ,W X Y Z and , , ,w x y z
lie on the corresponding pencils, their cross-ratios are equal:

lim lim
ZW zw

WX YZ wx yz YZ yz
WZ XY wz xy XY xy 

 
  

 
(2.4)

Proof for the Positive Foci. Let 1Q and 2Q be two arbitrary points on the same side of 

the vanishing line XYZ and let 1q and 2q be the corresponding points. Let 1 2 1 2, , ,X X x x be 

the vanishing points on the lines 1 2 1 2, , ,AQ AQ aq aq , respectively. The figures 1YZAF and 

1yzf a are similar by construction. In addition, from (2.4) we conclude that the segments 

defined by 1 2, , ,Z Y X X are similar to the segments defined by 1 2, , ,z y x x . Consequently, 

the figures 1 1 2YZAF X X and 1 1 2yzf ax x are similar. 

Let 1S be the point on 1 1F X such that the line 1AS is parallel to the line 1 1Q F . Then the 

triangles 1 1 1Q X F and 1 1AX S are similar and we have:

1 1 1 1 1

1 1 1 1

X S X A q x
S F AQ aq

  (2.5)

where the second equality is due to (2.3). From (2.5) we see that the point 1S in the figure 

1 1 2YZAF X X divides the segment 1 1F X in the same proportion in which the point 1q in the 
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similar figure 1 1 2yzf ax x divides the segment 1ax . Consequently, the similarity extends to the 

figures 1 1 2 1YZAF X X S and 1 1 2 1yzf ax x q . 

In a similar manner, let 2S be the point on 1 2F X such that the line 2AS is parallel to the line 

2 1Q F . Following the same line of reasoning we conclude that the similarity extends to the 

figures 1 1 2 1 2YZAF X X S S and 1 1 2 1 2yzf ax x q q . 

Consider the triangles 1 2S AS and 1 1 2q f q whose similarity has just been demonstrated. We 
have:

1 1 2 1 2 1 1 2angle q f q angle S AS angle Q FQ  (2.6)
where the first equality is due to the similarity of the triangles (shown shaded) and the second 
equality is due to the parallelism of the lines 1AS and 2AS to the lines 1 1Q F and 2 1Q F , 

respectively. The result (2.6) shows that the arbitrary corresponding segments 1 2Q Q and 

1 2q q subtend equal angles at the points 1F and 1f , respectively, thus proving that the points 

1F and 1f are indeed the positive equiangular foci. 

Proof for the Negative Foci. If 2F and 2f are substituted for 1F and 1f , respectively, the 
proof proceeds in exactly the same way as the proof for the positive foci, except for the 
opposite signs of the subtended angles:

1 2 2 2 1 1 1 2 2angle q f q angle Q F Q angle Q F Q   (2.7)

This proves that the points 2F and 2f are indeed the negative equiangular foci. 
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Remark. The results (2.6) and (2.7) hold when the points 1Q and 2Q are on the same side of 

the vanishing line XYZ . If the points 1Q and 2Q lie on the opposite sides of the vanishing 
line, we submit without a proof that the results are trivially modified as follows:

1 1 2 1 1 2

1 2 2 1 2 2

180
180

o

o

angle q f q angle Q F Q
angle q f q angle Q F Q

 

  
(2.8)

Question 3. Show that if two points are taken at random in a region of volume V, the 
probability of their distance being between a and a+da, where a is small compared with the 
dimensions of the region, is:-

.4 21 daaV 

Show also that if three and four points are taken at random, the probabilities of their being 
within specified limits of distance are:-

dcdldmdnabclmndadbTVabcdadbdcV 13222

3
8and8  

respectively, where a, b, c, l, m, n are the distances between the points, and T is the volume 
of the tetrahedron whose angles are the four points.

Solution by Martin Baxter 

Assume that the region has most of its volume away from its edges (so that a randomly 
chosen point is very likely to be more than distance a away from its boundary) and also 
that in each of the problems, there do exist points of the given distances away from each 
other (for example, for three points, there is a triangle of sides a, b and c).

We proceed recursively, if we have k points correctly aligned, we calculate the conditional 
probability that an additional point is the correct distances, a1,a2, . . . , ak away from each 
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of those k points. This boils down to the new point being in the set formed by the 
intersection of spherical shells of the form:

,{ :| | , 1,.... },k
k i i i iA x x x a a da i k       R (3.1)

where x1,…xk are the existing k points. The probability of a randomly chosen point being in 
this set is just the set's volume divided by V, the volume of the region.

(1) For two points, the set A1 is simply a spherical shell with volume equal to its surface 
area ( 24 a ) multiplied by the shell's thickness (da). This gives the desired probability 
when normalised by V. It is useful to prove the following Lemma.

Lemma. If y1 , . . . , yk are a set of spanning vectors in kR , then the volume of the set

T{ : 0 1,  1,... }k
iS x x y i k    R (3 .2 )

is the reciprocal of the volume of the k-dimensional parallelepiped, P, whose sides are 
formed by the vectors y1 , . . . , y k .

Proof. Consider f and g, two linear maps from kR to itself, where

1
1

: ( ) ,          :
i k

i k
i i i i

i
f x x y g x x y






 T

and notice that they are adjoint and so share the same Jacobian determinant, |J|. 
Lett ing T be the set { : 0 1,  1,... }k

ix x i k   R , then we see that S = f--1(T) and P = 

g ( T ) . As T has volume of one unit, it follows that 1| | | |S J  and |P| = |J|, whence the 
result.

(2) For three points, we can assume that a is the largest distance and that a < b1 + b2, 
where we rewrite b and c as b1 and b2 . We already have the points x1 and x2 chosen so 
that |x1 — x2| = a, and we wish the third point to lie in the intersection

 3
2 { :| | , , 1,2}i i i iA x x x b b db i     R (3.3)

Let us consider first the locus of points
0 3
2 { :| | , 1, 2}i iA x x x b i    R (3.4)

which form a circle around the line x1 : x2. Let us fix any point 0
3 2x A , and let n1,n2 and n3

be unit vectors in the directions 3 1 3 2,x x x x  and 2 1x x respectively; and let Q be the 
plane containing the three points. 
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The set 2A is a torus formed by rotating a small cross-section around the circle 0
2A . That 

cross-section is the two-dimensional region

3{ ;0 ( ) , 1,2},i ix Q n x x db i    T (3.5)

which has area, by the Lemma, equal to 1 2 sin ,db db  , where θ is the angle between n1

and n2 .  Let φ be the angle between n1 and n3, so that 1
2sin sina b  , by the Sine 

Rule. The radius of the circle 0
2A is 1 sinb  , which is equal to 1

1 2 sina b b  . So the volume of 

2A is equal to 1
1 2 1 22 a b b db db  , which gives the desired result.

(3) For four points, we proceed similarly, and have already chosen 1 2,x x and 

3x satisfactorily, and define
0 3
3 { :| | , 1, 2,3}i iA x x x l i    R (3.6)

and
 3

3 { :| | , , 1,2,3}i i i iA x x x l l dl i     R (3.7)

Then the set 0
3A consists of just two points, one on either side of the plane Q. Choose x4 in 

0
3A , and let ni be the unit vectors in the directions x4 – xi ,  for i = 1,2,3. Then, half of 3A is 

the set
3

4{ : 0 ( ) ,1 1, 2,3}i ix n x x dl    R T (3.8)

which, by the Lemma, has volume equal to 1 2 3dl dl dl divided by the volume of the paral -
lelepiped formed by n 1, n2 and n3 . That volume is equal to 1 2 36 ( )T l l l , where T is the 
volume of the tetrahedron. The parallelepiped has volume equal to the triple product 

1 2 3.( )n n n , which is six times as large as the volume of a tetrahedron with vertices 0, 
n1,n2,n3. The answer then follows.

Question 4. Thirty rods of equal length have their ends jointed five and five together so as to
form the edges of a regular icosahedron: an elastic string is stretched between two opposite 

angles of the figure.  Show that if the tension of the string is  2
1

521052  , the ten rods 
which meet the string will each have a pressure 4; the ten rods which are perpendicular to the 
string will each have a tension 15  , and the other 10 rods will each have a 

pressure 15  .

Solution by David Forfar and J. S. Fowlie

The regular icosahedron is made up of 20 equilateral triangles and, if the string is vertical, we 
may call A the angle between the vertical and the 5 top sides (i.e. the rods) and B the angle 
which the nearly vertical sides (rods) make with an imaginary vertical plumb-line hanging at a 
corner.  
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The strange numbers in the question are because of the balance in the 4 forces (T1, 4, T2, T3)  
acting along:-(1) the string, (2) the 5 sides (i.e. the top rods) meeting at top or bottom, (3) the 
10 sides perpendicular to string, (4) the other 10 sides.

72o is the interior angle of a regular pentagon. By drawing a rough icosahedron, you can 
work out that sinA=1/(2sin36o) and sinB=1/(2sin18o) and, by resolving forces at the top, the 
tension in the string T1 must be 5*4cosA. By resolving forces vertically at a corner, the force 
T3 , in the nearly vertical rods, must be such that 2T3cosB=4cosA and by resolving forces 
horizontally at a corner  4sinA+2T3sinBcos72o=2T2cos54o .

Solving numerically, agrees with Maxwell’s solution namely (T1,4,T2,T3) = (10.5146, 4, 3.2361, 

1.2361) but his expression depend on  cos72o=
1

( 5 1)
4

 and cos36o=
1

( 5 1)
4

 . These 

results follow from the equation cos3θ+cos2θ=0 for which the solutions, in terms of cosθ, are 
cos36 ,cos 72 , 1o o  and therefore expanding we have 3 24c +2c -3c-1=0 where c=cosθ 
which factorises as (c+1)(4c2-2c-1)=0 and the factors of the quadratic 4c2-2c-1=0 are  

c=
1

( 5 1)
4

 .

Question 5. Three grooves are cut in a horizontal table; the bottoms of the grooves are 
horizontal lines meeting in a point O at angles of 120�; the sides of the grooves are planes 
inclined 45� to the vertical: a tripod is placed with its feet in the grooves, each foot being 
distant a from the point O.  Suppose one of the feet is due east of O, and that it is made to 
slide up the south side of the groove in which it stands: show that the tripod will begin to move 
about a right hand screw, whose pitch is 5

3 a, and whose axis meets the plane of the feet at a 

point 5
4 a due west of the point O, and is inclined tan-12 in the plane of the meridian, 

measured from the zenith towards the north.

Solution by Jovan Jevtic

Rotation about the origin. Let , ,x y z be the rectangular axes with the origin at O , pointing 

eastward, northward, and upward, respectively. Let , ,A B Cr r r  
be the initial values of the radius 

vectors of the tripod’s feet:  
1 1
2 2

3 3
2 20 , ,

0 0 0

CA B

A A B B C C

A B C

a axx xa
r y r y a r y a

z z z

         
                      
                 

  
. (5.1)

An infinitesimal rigid body displacement of the tripod can be decomposed into a rotation d


and a translation Tdr :

Tdr d r dr  
   

,  (5.2)

where r is the radius vector of a tripod point. Setting Ar r 
, Br r 

, and Cr r 
in (5.2):

,
,
,

A T

A z T

A y T

dx dx
dy ad dy
dz ad dz


  

   

3
2

1
2

3 1
2 2

,
,

,

B z T

B z T

B x y T

dx ad dx
dy ad dy

dz ad ad dz

   

   

    

3
2

1
2

3 1
2 2

,
,

,

C z T

C z T

C x y T

dx ad dx
dy ad dy

dz ad ad dz

  

   

     

(5.3)
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where , ,x y zd d d   and , ,T T Tdx dy dz are the rectangular components of the vectors 

d


and Tdr , respectively. Let ds be an infinitesimal southward displacement of the east 
foot. Then:

0,
,

,

A

A

A

dx
dy ds
dz ds


 


3 0,
0,

B B

B

dx dy
dz

 


3 0,
0,

C C

C

dx dy
dz

 


(5.4)

because the east foot slides up the south side of the eastward groove, and the other two feet 
slide along the bottoms of their respective grooves. Using (5.4) in (5.3), we obtain:

0,Tdx  (5.5) 2 0,z Tad dy    (5.6)

,z Tad dy ds    (5.7) 3 1
2 2 0,x y Tad ad dz     (5.8)

,y Tad dz ds    (5.9) 3 1
2 2 0,x y Tad ad dz      (5.10)

which can be solved for d


and Tdr in terms of ds :

0 0
2 , 2 .

3 3
1 1

T
ds dsd dr
a

   
          
      

 
(5.11)

Screw motion. Given an infinitesimal displacement (5.2), it is possible to choose a different 
center of rotation 0r


such that the corresponding translation is parallel to the axis of rotation: 

0( )dr d r r pd    
   

, (5.12)
which then represents a motion about a right hand screw of pitch p . Comparing (5.12) to 
(5.2), we find:

0 Td r pd dr    
  

. (5.13)

A dot product with d


gives 2
Tpd dr d   


, which may be evaluated using (5.11):

3 .
5

p a (5.14)

Furthermore, since 0r


in (5.12) can be any point on the axis of the screw, we choose the 

point where the axis of the screw meets the horizontal plane, i.e., 0 0.z  From (5.13), using 
(5.11) and (5.14):

 

0 0

0
40 2 1 1

3 15
0 2

x y z
ds ds
a

x y

   
       
     



, (5.15)

where  , ,x y z are the unit coordinate vectors. Solving for 0 0,x y , we obtain:

0 0 0
4 , 0, 0.
5

x a y z    (5.16)

In summary, the tripod will begin to move about a right hand screw (5.12), whose pitch is 
given by (5.14), and whose axis meets the plane of the feet at a point 4

5 a due west of the 

point O , as shown by (5.16). The axis, given by (5.11), is inclined 1tan 2 in the plane of the
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meridian ( yz plane,) measured from the zenith (positive z axis) towards the north (positive 
y axis,) which completes the proof. 

Question 6. If the centres of the bodies of the solar system are projected perpendicularly on 
a fixed plane, and the forces which act on them are resolved in that plane, show that the 
second differential coefficient with respect to the time of the moment of inertia of the system 
about an axis through its centre of mass perpendicular to that plane, together with twice the 
sum of the products of the projection of the distance between each pair of bodies into the 
resolved part of the attraction between them, is equal to four times the kinetic energy due to 
that part of the motion of the system relative to its centre of mass which is parallel to the plane 
of reference.

Solution by Ra�l Sim�n and David Forfar

We assume all the planets in the solar system lie in a plane and the origin is the centre of 
mass of the planets. We take the perpendicular through that origin.
A body travelling at speed v relative to the origin has kinetic energy (K.E.)

21 1
2 2 .dr d rmv m

dt dt


 
where r is the vector in the plane from the origin to the planet and we 

take the dot product of its velocity 
d r
dt


. The moment of inertia of the body about the 

perpendicular at the origin is  .I mr r   . Differentiating this once we have 2 .dI drmr
dt dt



 and 

differentiating twice we have 
2 2

2 22 . 2 .d I dr dr d rm mr
dt dt dt dt

 
  

 . Using Newton’s Law that 

vectorial force equals mass times vectorial acceleration, we have 
2

2 4.( . .) 2 .d I K E r
dt

   F

where F is the vectorial force (i.e. the attraction from the other planets) acting on the planet. 
We therefore have, for planet i, 

2

2 2 . 4.( . .)i
i i i

d I r K E
dt

 F (6.1)

We note that, in respect of any pair of planets, the forces are equal and opposite and thus if 
the force of planet j on planet i and is  ijF (this force points away from planet i) then the force 

of planet i on planet j is ji ij F F and for convenience we define 0ii F . Thus 

1

j n

i ij
j





F F . If we sum for all the n-planets (defining 
1

i n

i
i

I I




 ) as the total moment of inertia  

and K.E. as the total kinetic energy of the system (defining 
1

. . ( . .)
i n

i
i

K E K E




 ) we have:-

 
2 2

2 2
1 1 1

2 . 2 .( ) 4( . .)
j ni n i n

i i i ij
i i j

d I d Ir r K E
dt dt

 

  

     F F (6.2)
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Arranging the planets in pairs, we have :-
2

2
1

2 ( ). 4( . .)
j ni n

i j ij
i j i

d I r r K E
dt



 

     F (6.3)

Remembering that ijF points away from planet i towards planet j, whereas the vector 

 ( )i jr r points towards planet i from planet j, we have that the force 

 
3

*
( )

| |
i j

ij i j
i j

m m
G r r

r r
  

 F so the second term is 
2

1

*
2 | |

| |



 

 
  

 

j ni n
i j

i j
i ji j i

m m
G r r

r r
which is the 

product of the distance between the planets and magnitude of their mutual attraction.

Question 7.  A thin, uniformly elastic rod, OABC, originally straight, is constrained to pass 
through the points A, B, C in a straight line.  Show that the deflection of the part OA, produced 
by forces acting on that part only, will be the same as if the rod had been constrained to pass 
through two points A and X only, where

.
4

43
AC

BCABABAX 


If the rod is constrained to pass through an infinite number of points, at intervals each 
equal to AB, show that the constraint, as regards the part OA, will be the same as if the rod 
had been constrained to pass through A and Y, where

.3
2
1 ABAY 

Solution by Jovan Jevtic

Bending impedance. Consider a part of the rod whose end points are two adjacent points of 
constraint, such as A and B . The bending of the part AB is entirely determined by the 
bending moments at its end points, AM and BM . We’ll refer to the points A and B as input 

and output, respectively. Let A and B be the angles which the bent rod makes with the line 

AB at the input and output, respectively. For small bending angles, a linear relationship 
exists between the input and output quantities:

11 12

21 22

, where:A B
AB AB

A B

M M H H
H H 

     
       

     
H H ,      (7.1)

where the matrix ABH depends only on the distance AB and the elastic properties of the rod 

between the points A and B . Due to the similarity to the ray transfer matrix analysis in 
optics, we refer to the matrix ABH as the bending transfer matrix between A and B . 

As a special case, when there are no additional points of constraint beyond the point 
B , we have 0BM  , and (7.1) gives:

12

220B

A
A

A M

M HZ
H



 ,                   (7.2)
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which may be interpreted as an input bending impedance of the part AB . Furthermore, if 
there are additional points of constraint beyond the point B , the effect of the rod beyond the 
point B may similarly be characterized by an input bending impedance /B B BZ M  and 
used in (7.1) to obtain:

11 12

21 22
B B B

A B
A

A BM Z

M H Z HZ
H Z H







 


.  (7.3)

The last equation can be interpreted as the input bending impedance of the part AB loaded 
with the bending impedance BZ at its output.  
Bending transfer matrix. To derive an expression for the bending transfer matrix (7.1) for 
the part AB , we setup a Cartesian coordinate system , ,x y z with the origin at the point A
and the x axis pointing from A to B . We shall only consider the bending in the xy plane, 
since the bending analysis in the xz plane is identical. If ( )y x is the deflection of the rod, we 
recall from the theory of elasticity:

2

2

( )d y M x
dx EI

  , (7.4)

where ( )M x is the bending moment, E is Young’s modulus of elasticity for the material of 
the rod, and I is the moment of inertia of area of the rod’s cross section. The bending 
moment varies linearly between the points A and B , ( ) A AM x M N x  , where AN is the 

reaction force of the constraining point A . Consequently:

( ) ( ), 0A B A
xM x M M M x AB

AB
     .        (7.5)

The boundary conditions are:

0

(0) 0, , ( ) 0,A B
x x AB

dy dyy y AB
dx dx

 
 

    .                  (7.6)

A double integration of (7.4) from 0x  to AB , with (7.1), (7.5), and (7.6) in mind, gives:
62

2
2

AB

EI
AB

AB
EI

   
  
    

H . (7.7)

Distance AX. The input bending impedance of the parts AX and BC follow from (7.2)
and (7.7), 3 /AXZ EI AX and 3 /BCZ EI BC . The input bending impedance of the part 

ABC is that of part AB loaded with BCZ and follows from (7.3) and (7.7):

3 66 22 12 ( )
3 (3 4 )2 2

2 2

BC

ABC

BC

EI EIEIZ EI AB BCBC ABABZ AB AB EI AB AB BCZ
EI EI BC

   
  

   
. (7.8)

Part OA will deflect the same if AX ABCZ Z which finally gives:

3 4 .AB BCAX AB
AB BC





(7.9)
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Distance AY. If NZ is the input bending impedance of the rod constrained to pass thru 

N equidistant points at intervals AB , then NZ equals the input impedance of the part AB
loaded at the output by the bending impedance 1NZ  . From (7.3) and (7.7):

2 21

1 1 2

1

62 4 12( )
2

2

N

N N N N N

N

EIZ EI E IABZ Z Z Z ZAB AB ABZ
EI



 



 
    
 

.  (7.10)

Letting N  , we have 1N NZ Z Z   , so (7.10) gives: 2 3Z EI AB  . On the 

other hand, the input bending impedance of the part AY follows from (7.2) and (7.7), 
3 /AYZ EI AY . Part OA will deflect the same if AYZ Z which requires:

3 ,
2

AY AB (7.11)

thus completing the proof. 

Question 8. The configuration of four particles, whose masses are P, Q, R, S, is determined 
by their distances QR = a, RP = b, PQ=c, PS=l, QS=m, RS=n, and the potential energy of the 
system is

 :)()()()()()( 2
0

2
0

2
0

2
0

2
0

2
02

1 nnNmmMllLccCbbBaaAV 
show that the small oscillations of the system are determined by six equations of the form

0 0 0

0 0

( ) ( ) ( )cos ( ) cos
( ) cos ( ) cos 0

QRa Q R A a a QB b b ab RC c c ac
RM m m am QN n n an

      

    



where cos ab denotes the cosine of the angle QRP between a and b.

Show also that if the particles are all equal, and the law of force such that any two of them 
would be in equilibrium at a distance a and would make small oscillations of period T, then for 

three such particles the periods of the fundamental vibrations are 3
4 T and 3

2 T, and for 

four such particles 2 T, T, and 22
1 T.

Solution by Jovan Jevtic

Let , ,R R Rx y z be the rectangular coordinates of the particle of mass R and similarly for the 

other particles. The kinetic energy of the particle of mass R is then:
2 2 21 ( )

2R R R RT R x y z     ,                                                (8.1)

and the Lagrangian, L , of the system is given by:

P Q R SL T T T T V     .                (8.2)
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The equation of motion for the coordinate Rx is, from Lagrange’s equations:-

0 0 0R
R

R R R R R R R

Td L L d V V a V b V nRx
dt x x dt x x a x b x n x
           

                        


 
(8.3)

because the distances , ,c l m are not affected by the displacement of the particle R alone. 

Since 2 2 2( ) ( ) ( )R Q R Q R Qa x x y y z z      , / ( ) /R R Qa x x x a    , (8.3) becomes:

0 0 0( ) ( ) ( ) 0R Q R SR P
R

x x x xx xRx A a a B b b N n n
a b n
 

       . (8.4)

In a similar manner, we obtain the equation of motion for the coordinate Qx :

0 0 0( ) ( ) ( ) 0.Q R Q S Q P
Q

x x x x x x
Qx A a a M m m C c c

a m c
  

       (8.5)

At this point of the analysis, we note that the orientation of the x axis in (8.4) and (8.5) is 
arbitrary. At a given instant of time, let us choose the x axis parallel to the line which passes 

thru the instantaneous positions of the particles of mass Q and R . This gives us:-

1, cos , cos , cos , cosR Q S Q P QR SR P
x x x x x xx xx x ab an am ac

a b n m c
  

     . (8.6)

We now look at the difference of (8.4) and (8.5), with the identities (8.6) in mind:

0 0
0

0 0

( ) ( )1 1 ( ) cos cos

( ) ( )cos cos 0.

R Q
B b b N n nx x A a a ab an

R Q R R
M m m C c cam ac

Q Q

   
       

 
 

  

 

(8.7)

Although R Qx x a  at the instant when the x axis is parallel to QR , we cannot, in 

general, assume that R Qx x a   , due to the relative rotation between the line QR and the 

fixed x axis. In particular, if a QR


, it can be shown that: 
2 2

R Q
a ax x a

a


  
 

   .  (8.8)

In the case of small amplitude oscillations, however, the terms in (8.8) which are proportional 
to the square of the amplitude may be ignored and we obtain from (8.7):

0 0 0

0 0

( ) ( ) ( ) cos ( ) cos
( )cos ( )cos 0,

QRa Q R A a a QB b b ab QN n n an
RM m m am RC c c ac

       

    


(8.9)

exactly as specified in the problem statement. This result was obtained by starting with the 
equations of motion (8.4) and (8.5) for the pair of particles which define the distance a . 
Additional 5 equations may be derived in a similar manner by considering the pairs of 
particles which define the distances , , , ,b c l m and n . 

Two particles. Setting 0B N M C    and Q R in (8.9), gives 

02 ( ) 0Qa A a a   , which allows an oscillatory solution 0 cosma a a t  , provided that 

the angular frequency  satisfies the eigenvalue equation 2( 2 ) 0mQ A a   . From 

2 /T   :
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2QT
A

 . (8.10)

Three particles. Symmetry implies that the equilibrium positions are the vertices of an 
equilateral triangle. Setting 0 0 0a b c  , cos cos cos( / 3) 1/ 2ab ac    , ,A B C 

0,N M  and Q R in (8.9), gives 0 0 02 ( ) ( ) / 2 ( ) / 2 0Qa A a a A b a A c a       .

Assuming 0 cos ,ma a a t  0 cos ,mb a b t  and  0 cos ,mc a a t  we obtain an 

eigenvalue equation 2( 2 ) / 2 / 2 0m m mQ A a Ab Ac     . Repeating for the remaining 

2 pairs of particles:

2
2

4 1 1
2 21 4 1 0, where:

1 1 4

m

m

m

a
Q Tb
A T

c


  



   
                    

(8.11)

and we’ve used 2 /T   and (8.10). Equating the determinant of the matrix (8.11) with 
zero, 2( ' 3) (6 ') 0    , leads to the desired periods of oscillation: 

1 2 1 2 3 3
2 23 , 6 .

33
T T T T T               (8.12)

Four particles. Symmetry implies that the equilibrium positions are the vertices of a 
tetrahedron. Setting 0 0 0 0 0a b c m n    , A B C M N    , Q R , and  

cos cos cos cos cos( / 3) 1/ 2ab ac am an      in (8.9), and assuming that 

, , , ,m m m m ma b c m n are the amplitudes of the oscillation of angular frequency  , we obtain 
2 2 / 2 / 2 / 2 / 2 0m m m m m mQa Aa Ab Ac Am An       . Repeating for the remaining 

5 pairs of particles:-

2
2

4 1 1 0 1 1
1 4 1 1 0 1
1 1 4 1 1 0 2 20, where:
0 1 1 4 1 1
1 0 1 1 4 1
1 1 0 1 1 4

m

m

m

m

m

m

a
b
c Q T
l A T
m
n





 






   
     
                 
  
  

     

(8.13)

and we’ve used 2 /T   and (8.10). Equating the determinant of the matrix (8.13) with 
zero, 2 3( 2) ( 4) ( 8) 0        , leads to the desired periods of oscillation: 

1,2 1,2 3,4,5 3,4,5 6 6
12 2 , 4 , 8 ,
2

T T T T T T                (8.14)

which completes the proof.           
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Question 9. Define the principal foci and the principal focal length of an optical instrument, 
and show that in any system of thin lenses having the same axis:–

(1)    The reciprocal of the principal focal length is the sum of the reciprocals of the focal 
lengths of the lenses, together with the sum of all intervals and products of consecutive 
intervals into which the axis may be divided by the lenses, each product being divided by the 
product of the focal lengths of the lenses at the points of section, including the first and last.

(2)    The distance of the first principal focus of the instrument from the first lens is equal 
to the principal focal length of the system multiplied by 1 + the sum of all intervals and 
products of consecutive intervals beginning with the first lens, each divided by the product of 
the focal lengths of the lenses at the points of section excluding the first lens.

In what direction is this distance to be measured?

Solution by Winifred Sillitto, Douglas Essex and Jovan Jevtic

Definitions

(a) The first principal focal point (of a rotationally invariant optical instrument) is the point 
on the central (optical) axis of the instrument such that all light rays (incident on the optical 
instrument) passing through the first principal focal point emerge from the optical 
instrument parallel to the axis, The second principal focal point (of a rotationally invariant 
optical instrument) is the point on the central (optical) axis of the instrument such that all light 
rays parallel to the axis (and incident on the optical instrument) pass through the second 
principal focal point on emerging from the optical instrument,.

(b) the first principal plane is the transverse plane where a ray of incident light coming from 
the first principal focal point would intersect the extended line of the same light ray, now 
emerging parallel to the axis.  The second principal plane is the transverse plane where the 
line of a ray parallel to the axis (and incident on the instrument) would intersect the extended 
line of the same ray now emerging and going through the second principal focal point.  

(c) The first principal focal length is the distance (along the central axis) between the first 
principal focal point and the first principal plane. The second principal focal length is 
the distance (along the central axis) between the second principal plane and the second 
principal focal point.

[Note:- There are two principal planes which are planes of unit magnification and can be 
considered as the boundaries of an equivalent ideal thin lens. We assume the refractive index 
is the same on both sides of the instrument and so the first and second principal focal 
lengths are equal. We call the focal length of the optical instrument, F].

Matrix representation of an optical instrument

An incident light ray (coming in to the optical instrument from the right hand side) which 
intersects the central axis of the optical instrument, may be described by a pair of co-
ordinates, y and α, where:-

(i) y is the displacement in a plane transverse to the (optical) central axis between the point 
where the axis intersects the plane and  the point where the ray intersects the plane,

(ii) α is the angle of the light ray, as it intersects that transverse plane, relative to the central 
axis measured in the plane which contains both the ray and the axis. 

We arbitrarily treat as positive (1) displacements  from the central axis and (2) clockwise 
rotations between a vector pointing in the direction of travel of the ray of light towards the 
optical instrument and a vector pointing along the central axis towards the optical instrument 
and (3) distances from the first lens in the direction of the incident ray.
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We use the assumptions (paraxial) that α=sin α= tan α and cos α=1, and that the lens is so 
thin that it can be treated as a pair of contiguous planes; also that the refractive index is unity 
outside and between the lenses.

As a ray is transferred from one transverse plane to another transverse plane, with (y, α) for 
the ray at the first plane and (y’, α’) for the ray at the second plane, we have (by trigonometry) 
two special cases:-

(a) refraction - from a plane just in front  of an ideal thin lens of focal length f to a plane just 
behind the lens (as seen from the source of the incident light):

A single lens (of negligible width) of focal length f :-

'

'

y y
y
f



   
or 

1

1 0' 1 0
1' 1f

y y y
p

        
                    

(9.1)

where the power, p, of the lens is defined as 1 f

(b) translation -(in the direction of travel of the light) across a lens-free gap (or space) of axial 
length d :-

' 1 ' 1
or 

' 0 1 ' 0 1
y d y y d y          

                        
(9.2)

In general the behaviour of a light ray between any two planes (transverse to the axis of an
optical instrument) can be described by a matrix, where :-

11 12

21 22

'
'

m my y
m m
    

          
(9.3)

For transfer from an incident ray parallel to the axis to the corresponding emergent ray 
through the second principal focal point :-

α=0, thus '=m21y=-y/F=-Py, where F is the principal focal length of the optical 
instrument and P is the power of the optical instrument and we have P=-m21

For transfer from an incident ray through the first principal focal point to an emergent ray 
parallel to the optical axis.

=y/D and ' = 0 where D (positive) is the distance from the first lens to the first
principal focal point, then 
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21 22 0ym m
D

 

and so 

22
22

21

.mD F m
m

  

Thus to find expressions for P and D we need to determine m21 and m22.

A coaxial system consisting of a lens of power p1 , followed by a gap of length d1, followed by 
a lens of power p2 gives:-

11 12 1 1 11

21 22 2 1 1 2 1 2 1 2 1

1 0 1 0 1' 1
1 1 1' 0 1

m m pd dy y d y y
m m p p p p p p d p d

                
                                          

(9.4)

Therefore 21 1 2 1 2 1
1P m p p p p d
F

      and 22 2 1. .(1 )D F m F p d  

For 3 lenses and 2 gaps we have:-

11 12 2 1

321 22 2 1

1 0 1 0 1 0' 1 1
1 1 1' 0 1 0 1

m my y d d y
pm m p p

               
                                    

(9.5)

The matrix is:-

1 1 1 2 2 2 1 2 1 2 1 2 2 1 2

1 2 3 1 2 1 1 3 1 1 3 2 2 3 2 1 2 3 1 2 2 1 3 1 3 2 2 3 1 2

1
1

pd pd p d p p dd d d p dd
p p p p p d p p d p pd p pd p p p dd p d p d pd p pdd

      
             

(9.6)

So 21 1 2 3 2 3 1 1 1 2 3 2 1 2 3 1 2
1 ( ) ( )P m p p p p p p d p p p d p p p d d
F

          

22 2 3 1 3 2 2 3 1 2. .{1 ( ) )D F m F p p d p d p p d d     

For 4 lenses and 3 gaps we have:-

11 12 3 2 1

321 22 4 2 1

1 01 0 1 0 1 0' 1 1 1
11 1 1' 0 1 0 1 0 1

m my y d d d y
pm m p p p

                   
                                            

(9.7)

Multiplying these matrices out and thus determining m21 and m22:-
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21 1 2 3 4

2 3 4 1 1 1 3 2 3 2 4 1 4 2 1 2 3 4 3

1 2 3 1 2 2 3 1 4 1 3 1 2 1 3 2 3 4 2 3

1 2 3 4 1 2 3

1

( ) ( ) ( )
( ) ( )

P m p p p p
F

p p p p d p p p p p p p p d p p p p d
p p p d d p p p p d d p p p p p p p d d
p p p p d d d

      

         
     



(9.8)

22 2 3 4 1 3 4 2 4 3

2 3 1 2 2 3 4 1 3 2 3 4 2 3

2 3 4 1 2 3

. .{1 ( ) ( )
( ) ( )

)}

D F m F p p p d p p d p d
p p d d p p p d d p p p d d
p p p d d d

       

    



(9.9)

and we can see how an additional lens adds terms to the effective power of the lens 
assembly constituting the optical instrument.

Examining the expressions for P and D we see that they can be interpreted as stated by Clerk 
Maxwell allowing for the fact that we have taken a converging lens to have positive focal 
length but the opposite sign convention is also valid (Maxwell, by his own admission, was not 
too hot on signs!).

Considering the definitions above, we see that it is the distances between the lenses which 
count..

If all the distances between the lenses are zero (i.e. the lenses are on top of one another) we 
have, as expected,

1 2 3 4

1 1 1 1 1 ......
F f f f f
    (9.10)

For more information, see:-

Sampson  R. A. (1913), A New Treatment of Optical Aberrations, 
Philosophical Transactions of the Royal Society, 121, pp. 149-185.
Gerrard A. and Burch J. M. (1994), Introduction to Matrix Methods in Optics, 
Dover Publications.
Longhurst R. S. (1957), Geometrical and Physical Optics, Longmans.

Question 10. The motion of an incompressible homogeneous fluid in a spherical vessel at a 
given instant is such that each spherical stratum rotates like a rigid shell, the rectangular 
components of its angular velocity being ω1, ω2, ω3, these quantities varying from stratum to 
stratum: show that if each particle is attracted towards the centre with a force whose intensity 
per unit of mass is

,)( 321
321 dr

dV
dr

dz
dr

dy
dr

dxzyx 





 




where V is any function of the co-ordinates, the motion of the fluid will be steady, and 
determine the pressure at any point.
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Solution by Jovan Jevtic

The motion of an incompressible homogeneous fluid is governed by the equations:

 

0 (conservation of mass)
1 (Euler's equation)

div

grad grad p
t 




   




  

v
v v v f

(10.1)

where 
v is the velocity, 


f is the force per unit mass, p is the pressure, and  is the 

density of the fluid. Let 
r be the radius vector of a fluid particle and let ( )

  r  be the 
angular velocity vector of a spherical stratum of radius r . Knowing that the fluid particles at 
the given instant move along circular trajectories,  

  v r , we first confirm that the equation 
of continuity in (10.1) is satisfied:

2 3 3 1 1 2( ) ( ) ( ) 0       
      
  

div z y x z y x
x y z

v , (10.2)

and second, we have that:
  2( ) ( )grad r          
         v v v r r    . (10.3)

Furthermore, the force given in the problem statement can be written in the vector form:

ˆ( ) ,d grad V
dr

      
 

   f r r r
 (10.4)

where ˆ / r
r r stands for the unit vector. When (10.3) and (10.4) are used in (10.1), we 

obtain: 

2 ˆ( ) d pr grad V
t dr




                   

 
   v r r r

  . (10.5)

If  2 2

0

1( ) ( ) ( . )
2

u r

u
r u udu r  




 

 
then we obtain:

( , ) ( , )( ) ( )v r t p r tgrad r V r c
t




 
      



(10.6)

Where c is a constant.

Is there a pressure distribution ( , )p r t that leads to a steady flow of fluid,

i.e., ( , ) / 0v r t t  


in (10.6)? 
If

( , ) ( ( ) ) )p r t V r r c      (10.7)

then 
( , ) 0v r t
t







everywhere, which completes the solution.

Comment by Professor H.K. Moffatt:-

This problem is a little artificial, as it involves a hypothetical force distribution 
which is just such as to maintain the assumed (non-viscous) fluid flow.

This type of flow does actually occur in a viscous fluid contained between two 
concentric spheres, if the spheres rotate about different axes through their 
common centre with different angular velocities. If the Reynolds number is 
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small, and inertia is neglected (the opposite of the situation considered by 
Maxwell), then the fluid does indeed move with purely tangential velocity on 
spherical shells. Inertia perturbs this flow however and drives meridional 
circulation, which is a considerable complication!

See reference:- Bajer K. & Moffatt H.K. (1992), Chaos associated with fluid 
inertia. In: Topological Aspects of the Dynamics of Fluids and Plasmas. Editors, 
Moffatt H.K., Zaslavsky G.M., Tabor M. and Comte P. Kluwer Academic 
Publishers, pp. 517-534.

Question 11. Show that if P be a variable point on a sphere, and A, B, fixed points,

ABPBPA coscoscos3 

is a spherical harmonic of the second order, and that if A', B', are the poles of another 
harmonic, the condition of the two harmonics being conjugate to each other is

0coscos2coscos3coscos3  BAABBABABBAA

If the intersections of five equidistant meridians with two parallels of latitude are the poles 
of five spherical harmonics of the second order, show that if they are all conjugate to each 
other, the polar distances of the two circles must be 

.661462tan 1 




 

Solution by Jovan Jevtic

Spherical Harmonics. We use a notation closely paralleling Mawell’s exposition on spherical 
harmonics in the 3rd edition of the Treatise (Chapter IX, Articles 128 thru 133.) Let O be the 
center of the sphere, r OP , cosa PA  , cosab AB  , and let / ah  be the derivative 

in the direction OA . Then:

   2/ , / / , / 1 / , / 0a a b a ab a b a a a ab ar h h r h r h                     , (11.1)

(ibid., equations 5 and 7.) It suffices to prove that:
2 2 2 2 2 2 2/ / / 0x y z               (11.2)

for:    23 .a b ab r     (11.3)

Consider first the derivative with respect to x , / / xx h     :

 23 3 2 3

(3 3 2 ),

ax a x bx b x
b a x a b ab

x

a bx b ax x ab

r r
h r r

r

           

     

          
  

(11.4)

2

2

2

(3 3 2 )

13 3 2 6 2 .

x a bx b ax x ab
x

ax a x bx b x x
bx ax ab ax bx ab

h

r
r r r


      

      
     


   



   
     

 

(11.5)
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When (11.5) is used in (11.2), we obtain:
2 6( ) 6 0ax bx ay by az bz ab             , (11.6)

which shows that   23 a b ab r   satisfies Laplace’s equation and that 3 a b ab   is 
indeed a spherical harmonic of the second order. 

Conjugate Harmonics. Let (3 ) / 2ab a b abY     and ' ' ' ' ' '(3 ) / 2a b a b a bY     be the 

spherical harmonics corresponding to the poles ,A B and ', 'A B , respectively. If abY and 

' 'a bY are conjugate to each other, we must have: 

' ' 0ab a b
r a

Y Y ds


 . (11.7)

In a beautiful derivation, rich with physical insight, and to which the reader is referred (ibid., 
equation 31,) Maxwell has shown that, in general:

1

1 1

1

...2
... ...

0

( )4
!(2 1) ...

m

n m

n

n m
b bn m

a a b b
a ar a r

r Y
Y Y ds a

n n h h
  

 




   ,     (11.8)

where the poles of the spherical harmonics of orders n and m are 1,..., nA A and 1,..., mB B . 
This equation reduces the integration over a sphere of radius a to a differentiation at the 
origin. In our case, 1 2 1 22, ' ',n m A A A B B B AB    , so (11.7) and (11.8) reduce to:   

2 2 2

' '
' ' ' ' 00

( )0 0 0ab
ab a b

a b a br a rr

r YY Y ds
h h h h 

  
    

    (11.9)

where we’ve already defined  in (11.3). The derivative '/ ah  follows directly from (11.4)

by substituting 'a for x :

' ' '
'

(3 3 2 ).a ba b aa a ab
a

r
h
      

  


(11.10)

The additional derivative '/ bh  can be evaluated with the aid of (11.1):

2

' ' ' '
' '

' ' ' ' ' ' ' '
' '

' ' ' ' ' '

(3 3 2 )

3 3 2

3 3 2 .

b a ba b aa a ab
b a

ab a b bb b b a b a b
ba aa ab

aa bb ab a b a b ab

h h

r
r r r

      

        
  

     

 
   

 

       
 

  

(11.11)

Consequently, the condition (11.9) reduces to:

' ' ' ' ' '3 3 2 0,aa bb ab a b ab a b        (11.12)
exactly as specified in the problem. 

Consider 10 poles whose polar distances  and azimuths  are given by:

( , ), ( , ), 0,1, 2,3, 4n A n BA n B n n      , (11.13)
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where 2 / 5  . These poles define 5 spherical harmonics of the second order by the 

equations 3 , 0,1, 2,3, 4
n n n n n na b a b a bY n     , as shown in the first part of the problem. If 

n na bY is to be conjugate to
m ma bY , the condition (11.12) must be satisfied:

3 3 2 0,
n m n m n m m n n n m ma a b b a b a b a b a b n m         (11.14)

From (11.13), we obtain:
2 2

2 2

sin cos( ) cos ,

sin sin cos( ) cos cos ,

sin cos( ) cos ,

n m

n m

n m

a a A A

a b A B A B

b b B B

n m

n m

n m

   

     

   

  

  

  

(11.15)

so that (11.14) becomes: 

2 2 2 2

2 2

3[sin cos( ) cos ][sin cos( ) cos ]
3[sin sin cos( ) cos cos ] 2[sin sin cos cos ] 0.

A A B B

A B A B A B A B

n m n m
n m

     

        

    

     
(11.16)

To simplify, divide by 2 2sin sinA B  and define:

1/ tan , 1/ tanA A B Bx x   (11.17)
Then (11.16) reduces to:

2 2 2 26cos ( ) 3( ) cos( ) 4 4 2 0A B A B A Bn m x x n m x x x x         . (11.18)

which can be solved for cos( )n m  :

2 4 2 2cos( ) 3( ) 9( ) 48(2 2 1) /12A B A B A B A Bn m x x x x x x x x            (11.19)

Given the polar distances of the poles A and B , Ax and Bx are fixed by (11.17), and we see 

that the orthogonality condition (11.19) allows only two possible values of cos( )n m  for 
any combination of n m . This is indeed the case for 2 / 5  , because:

( 1 5) / 4, 1 or 4
cos( )

( 1 5) / 4, 2 or 3

n m
n m

n m


      
   

(11.20)

Comparing (11.19) to (11.20) gives:

2 4 2 2( ) 1 and    9( ) 48(2 2 1) 3 5A B A B A B A Bx x x x x x x x       (11.21)
which simplifies to:

2 2 2( ) 1 and 8 8 1 0A B A B A Bx x x x x x     , (11.22)
and finally:

   1 and (2 6) / 4A B A Bx x x x     , (11.23)
where we use the square and curly brackets to keep track of the alternative signs. Solving:

 , [ ]1 6 1 / 2A Bx     , (11.24)

where   reduces to  because  gives an imaginary solution. Finally, we use (11.17):
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    
 

,
,

1 2 [ ]1 6 1tan
[ ]1 6 1 [ ]1 6 1

[ ]1 6 1 2 62 (2 6) 6 1 10 4 6
2 6 2 6

(2 6) 14 6 6

A B
A Bx


 

   
    

  
        

 

   










(11.25)

If the pair of polar distances ,A B  is a solution corresponding to the  sign in   , then the 

pair ,B A     is the solution corresponding to the  sign, which is equivalent to a trivial 
interchange of the north and south poles on the sphere. We conclude, therefore, that the 
polar distances of the poles (11.13) are given by:

 1
, tan 2 6 14 6 6 ,A B     (11.26)

which completes the proof.

Question 12. A soap bubble is gradually charged with electricity; determine the pressure of 
the air within it, and show that when it becomes less than that of the air outside, the 
equilibrium of the bubble becomes unstable with respect to small deviations from the 
spherical form.

Solution by Dr. Jovan Jevtic

Surface tension. Let 1 and 2 be the principal curvatures of a small surface element of the 
bubble. The surface tension pulls on the rim of the element by a net force of the same 
intensity and direction as the force produced by an external pressure of magnitude:

1 2 ˆ( )sp divn      , (12.1)

where  is the coefficient of surface tension and n̂ is the outside normal to the surface. For 

a spherical bubble of radius a , we have 1 2 1/ a   , so that (12.1) becomes:

(0) 2
sp

a


 . (12.2)

Electrostatic pressure. Since the bubble is an electrical conductor, the electric field is zero 
inside the bubble and normal to the outside surface of the bubble. The net electrostatic force 
acting on the element of surface is of the same intensity and direction as the force produced 
by an internal pressure of magnitude: 

2

0
1
2e

Vp
n


    

, (12.3)

where V is the electrostatic potential and 0 is the permittivity of vacuum (air.) For a 
spherical bubble carrying a net electrical charge q :

(0)

0

( ) ,
4

qV r r a
r

  , (12.4)

where r is the distance from the center, so that (12.3) becomes:
2

(0)
2 4

0

1
32e

qp
a 

 . (12.5)
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Equilibrium. The pressure balance for a spherical bubble follows from (12.2) and (12.5):
2

(0) (0)
0 0 2 4

0

2 1
32s e

qp p p p p
a a


 
      , (12.6)

where p and 0p is the pressure of the air within and outside the bubble, respectively. 

Perturbation of the shape. Let (1)r be the deviation of the distance to the center:
(1)( , ) ( , )r a r     . (12.7)

Following Maxwell (Treatise , 3rd ed., Art. 145a,) we expand the small deviations from the 
spherical form in a series of spherical harmonics:

(1)
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( , ) ( , ), 1
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m
nm n nm

n m n
r a r Y r   



 

    , (12.8)

where , ,r   are the spherical coordinates of a point on the bubble.  The 0n  and 1n 
terms have been excluded because they only affect the mean radius and the position of the 
center of mass, respectively. We can find the unit vectors tangent to the surface:
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(12.9)

or, considering the expansion (12.8), to within 2( )nmr :
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(12.10)

Perturbation of the potential. Let (1)V be the deviation of the electrostatic potential from the 
equilibrium value (12.4) :

(0) (1)( , , ) ( ) ( , , )V r V r V r     . (12.11)
Since it satisfies the Laplace’s equation we can expand it in terms of solid harmonics:
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    . (12.12)

Additionally, the tangential components of the electric field must vanish on the surface of the 
conducting bubble.  Keeping in mind the orders of magnitude given in (12.10):
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(12.13)

and similarly for ˆ 0v gradV  . We conclude that: 

.nm nmv r (12.14)

Perturbation of the electrostatic pressure. Keeping in mind n̂ from (12.10): 
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(12.15)

Consequently, the deviation of the electrostatic pressure (12.3) is given by:
(0) 2 (0) (1)
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, (12.16)

which may be evaluated using (12.4), (12.8), and (12.12). We obtain:
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Finally, due to (12.14):
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Perturbation of the surface tension. Using n̂ from (12.10) in (12.1), we obtain:
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(12.19)

The expression inside the square brackets simplifies to ( 1) m
nn n Y  . Furthermore:

(1) 2
2

1 1 1 ( )nmr r
r a a

   , (12.20)

so that the deviation of the surface tension pressure obtains from (12.19) and (12.8):
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Finally:
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Stability. Summarizing the findings so far, we have shown that the small deviation from the 
spherical form, given by (12.8), leads to the deviation of the electrostatic and surface tensions 
pressures, as in (12.18) and (12.22), respectively. We note that the change of the air pressure 
within the bubble can be neglected for small deviations from the spherical form because the 
volume of the bubble remains constant to within 2( )nmr , as can be easily verified by 
integrating (12.8) over the full solid angle. The net force on the surface element has the same 
direction and intensity as the force produced by an external pressure of the magnitude:

(0) (0)
0 0( )s e s ep p p p p p p p p         (1) (1).s ep p  (12.23)

Consider a deviation from a spherical shape which is proportional to a single spherical 
harmonic m

nY in (12.8). From  (12.22), (12.18), and (12.23), we obtain:
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or alternatively:
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When 0q  the restoring pressure is positive, indicating a stable equilibrium. As the charge 
q is gradually increased, the restoring pressure for all the perturbation modes diminishes. 
Other parameters being equal, the 2n  mode exhibits the smallest restoring pressure. 
Consequently, the instability is first reached when 2 0k  in (12.25):
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16 s e
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a a


 
         (12.26)

here we have also used (12.6). The perturbation mode 2n  is unstable when the pressure 
of the air within the bubble is less than that of the air outside, thus completing the proof. 

Comment by Professor H.K. Moffatt on above solution :-

This problem is very Maxwellian! The above solution assumes a bubble of 
constant volume (but see alternative solution below). This means that 
there is no need to invoke an equation of state for the air inside the bubble, 
and to allow for the possibility that the bubble in fact expands as the 
electric charge on it increases. This seems a legitimate assumption, but it 
is an assumption that perhaps needs stating somewhere. Also, the 
dynamics of the air inside the bubble is also neglected; this is also 
legitimate in the stability calculation, although the reasons are not 
altogether obvious.

Alternative solution by Diego Sevilla 

(where the assumption is that the bubble expands slowly, such that the bubble absorbs heat 
as it expands to keep its temperature constant)

1. Preliminaries

The air inside the bubble will be considered to be correctly described by the perfect gas state 
equation:-

pv NkT (12.27)
and all processes will be considered to be carried out sufficiently slowly to be isothermal, i.e. 
at a constant T.  N (the number of moles of gas) is constant as no air escapes from the 
bubble and k is the gas constant.
We consider the surface tension constant (  ) independent of the soap's surface 
concentration; in this way,  will not change when the bubble's surface is increased or 
decreased. 
We shall study a bubble with the shape of an ellipsoid of revolution, whose deviation from the 
spherical form is given by the parameter λ, which measures the relative difference between 
the maximum radius of revolution and length of the ellipsoid along  the axis of revolution. The 
volume, of this ellipsoid is:-
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 34 1
3

v r   (12.28)

From equations (12.27) and (12.28) one can obtain r as a function of p
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3 1
4π
NkTr= p + λ

  
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(12.29)

 
11
33 1r = Kp +λ 

(12.30)
Where 

1
33

4π
NkTK =  

 
 

(12.31)

In Section 2, the energy of the ellipsoidal bubble will be calculated. Then, in Section 3, the 
particular case of a spherical bubble will be considered, and the pressure of the air inside it 
will be calculated. Finally, in the last section, the conditions in which the spherical shape in no 
longer the most stable one are described. 

1. 2 Energy calculation 

We will call the bubble's total energy E, and this value can be expressed as the sum of three 
terms, which we will call volume energy (Ev), surface energy (Es) and electrostatic energy 
(Ee). Volume energy is due to the free energy of the air inside the bubble (as T is constant), 
and changes when the bubble changes its volume. Surface energy is due to the surface 
tension of the film of soapy water, and it is proportional to the surface of the bubble. Finally, 
electrostatic energy depends on the charge and the electrical capacity of the bubble. So 

v s eE= E +E +E (12.32)

2.1 Volume energy 

The work carried out by the gas at pressure p, confined to a volume v and surrounded by gas 
at a constant p0, when its volume is modified in dv, is 

 0δW = p p dv (12.33)
If the temperature, T, of the system does not vary, then δW=-dEv, being Ev the gas ‘free 
energy’ of Helmholtz. So

 0vdE = p p dv  (12.34)

As T is constant, volume v is only a function of the pressure p. Using equation (12.27), one 
can write 

2

NkTdv= dp
p

 (12.35)

Replacing (12.35) in (12.34)
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 02v
NkTdE = p p dp
p

 (12.36)

By integrating, the volume energy is, ignoring the addition of a constant:-

0

0

lnv
ppE = NkT +NkT

p p
(12.37)

2.2 Surface energy 

The energy due to the surface tension of a bubble is 

2sE = γS (12.38)
being  the coefficient of surface tension and S its surface. The surface of the  ellipsoid of 
revolution is given in [1]1

-1

2 2
2 {1 cos ( )}

2
2 a bS = πb +

ab a b
(12.39)

where a is the major semi-axis and b the minor semi-axes. We give a the value (1+λ) r and b
the value r. So 
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12λ

2 + λ
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+ λλ +

  
 
  

(12.40)

Considering equations (12.38), (12.40) and (12.30), the surface energy results in 
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(12.41)
Where
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(12.42)

1
The formula will continue to be valid when b>a (flattened ellipsoid). By simple algebraical manipulations one can 

reach an equivalent formula 
2 2

2 2

22 ln
2

2 πba b+ b aS = πb +
ab a



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2.3 Electrostatic energy 
A charged body's electrostatic energy is 

2

2Ce
QE = (12.43)

where Q is the electrical charge and C is the capacity. The capacity of a conducting surface 
with the shape of a ellipsoid of  revolution  is given in  [2]2 where ε is a constant:-
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2 2
4
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a+ a b
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 

(12.44)

Once again, considering a=(1+λ) r and b=r, it results that 
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(12.45)

Considering equations (12.43), (12.45) and (12.30), one arrives at
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(12.46)

being 
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(12.47)

2.4 Total energy 

Using (12.37) (12.41), and (12.46) in (12.32)

   
2 12

20 3 3

0

ln 4
8

pp QE= NkT +NkT + πγK p f λ + p g λ
p p π K


(12.48)

The first two terms of the Taylor's series of functions f(λ) and g(λ), given in (12.42) and  
(12.47) are (see Note below):-

2 The formula is also valid for a flattened ellipsoid (b>a). By simple algebraical manipulations one can reach an 

equivalent formula 
2 2

4
arccos

b aC = πε a
b


.
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45

f λ = + λ +O λ (12.49)

   2 341
45

g λ = λ +O λ (12.50)

So, the energy of a partially deformed bubble (λ<<1) is 
2 1 2 12 2

2 2 2 30 3 3 3 3
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4ln 8 {16 }+ ( )
8 45 8
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3. The bubble's inner pressure

In a spherical bubble (λ=0), the energy is 

2 12
20 3 3

.
0

{ln } 8
8sph

pp QE = NkT + + πγK p + p
p p πεK


(12.52)

If the bubble is in equilibrium, then 

dEsph.

dp
= 0

and based on this condition one obtains the following 

5 22 2
2 3 31 16

3 80
p Qp= p + πγK p p
NkT πεK

  
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 
(12.53)

This equation defines p implicitly as a function of N, T and Q.

4. Stability of the bubble 

According to equation (12.51), the energy of a slightly deformed bubble (λ<<1) is 

E=Esph. + Vλ2

Being

2 12
2 3 34 16

45 8
QV = πγK p p
πεK

 
 

 
(12.54)

One can easily see from equation (12.53) that the expresion between brackets is equivalent 
to 



Page 32 of 37

03 1 pNkT
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(12.55)

so that,

012 1
45

2
sph.

pE = E + λ NkT
p

 
 

 
(12.56)

In the last equation is presented how, when the inner pressure of the bubble p falls to a value 
less than the external pressure p0, the spherical form is no longer the configuration with the 
least energy. In this way, when exposed to a minimal perturbation the bubble will tend to 
loose its shape and collapse. Another way of putting it is that, when p=p0 there is no longer 
anything to sustain the bubble’s shape –hence ‘instability’.
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Note:-
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Question 13. The resistance of a battery with its electrodes is R, and its electromotive force 
is constant.  The circuit is completed by a fine wire of uniform section, whose resistance is a 
function of its temperature, which is supposed to be the same at all points of the wire. The 
wire is such that if no heat were generated in it, it would lose one per cent. of its excess of 
temperature over that of the air in a time T; and the electromotive force is such that if the wire 
were prevented from losing heat, its resistance would increase one per cent. in time τ.  Show 
that if τ is the resistance of the wire when the current is in equilibrium, the equilibrium will be 
unstable if (R-r)T is greater than (R+r).

Solution by David Forfar

Let θe be the equilibrium temperature of the wire, re be the equilibrium resistance of the wire 
and θa be the temperature of the air.

In equilibrium the current is 
e

V
R r

and the rate of generation of heat is 

2

*
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e
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V r
R r

(13.1)

this must equal the rate of heat loss in the wire which is 

0.01* ( )e a
C

T
  (13.2)

where C is the thermal capacity of the wire. So the resistance and temperature in equilibrium 

are determined by 2
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In a small time t the increase in temperature of the wire is 
.01* *( )e aC t

T
 


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   and 

the increase in resistance is 
.01* err t  


The increase in the heat generated is the differential coefficient of  (13.1) w.r.t. r times r
which equals 

2 2

3 2

*( ) .01* * ( ). .
( ) ( ) ( )

e e e

e e e

V R r V r R r tr
R r R r R r

  
 

   
(13.3)

The increase in heat loss is
2 2

2 2

* .01* *.01* . . .
( ) ( ) ( )

e e

e e a e

V r V rC t
T R r R r T




 
 

  
  

(13.4)

If the rate of generation of heat is in excess of the capacity to lose heat, unstable equilibrium 
results. 

This happens when 
( ). ( ).e eR r T R r    (13.5)
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Question 14.  It is proposed to construct a resistance coil, the percentage error of which shall 
be a minimum: the probable error (take as meaning the standard deviation of the 
measurement of the resistance of the wire) arising from imperfect connexion of the electrodes 
is r, and the defect of insulation is such that, independently of the wire, the conductivity 
between the electrodes is C, with a probable error (take as meaning the standard deviation of 
C) c: show that the best value for the resistance of the wire is such that if x is the actual 
resistance of the apparatus,

4 2 3 2(1 ) (1 )x c Cx Cx r  

Solution by Jovan Jevtic

Let R be a random variable, representing the actual resistance of the wire and any 
imperfection arising from connection of the electrodes. We take the latter to be small relative 
to R. The actual resistance of the apparatus, x, is derived from the parallel connection of (a) 
the resistance R and (b) the conductivity between electrodes, C :

1 1
1

RC x
x R RC
  


or     (14.1)

If R and C are random variables representing small deviations from the true values of R 
and C and if [ ]E signifies “mathematical/statistical expectation” and given that R and C
are assumed statistically independent of each other, we have:-

[ ] 0, [ ] 0, [ . ] 0      R C R CE E E (14.2)

The change of x can be estimated as:
x xx R C
R C
 

    
 

(14.3)

Consequently, we obtain, to first order, from (14.3) :

2 2

( ) ( ) ( )x xVariance x Variance R Variance C
R C
               

(14.4)

If we now identify the variances of the random variables with the squares of probable errors, 
we have:-

2 2( ) , ( )Variance R r Variance C c   
Use (14.1) to evaluate the partial derivatives:

2
2

2 ,x x x x
R R C
 

  
 

(14.5)

we obtain from (14.4) an expression for the square of the relative error (taken to be the 
variance of x divided by the square of x) to be minimized: 

2 2
2 2

2 4

( )Variance x x r x c
x R


  (14.6)

To minimize the relative error with respect to R, we set:

 
2 2

2 2 2 4 2 2
4 0 2 0x r xx c R r R c xr

R R R
  

        
(14.7)

which, with the help of the first expression in (14.5), gives the condition:
2 4 2 2( ) 2 0r R c x Rr   (14.8)
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Finally, from (14.1) and substituting into (14.8), gives: 

   4 32 4 2 21 2 1 0Cx r x c Cx r    

 34 2 21 (1 )x c Cx Cx r   (14.9)
thus completing the proof. 

Question 15. The measured values of the sides of a certain triangle are , , ,a b c and the 
observed angles are found to exceed the angles calculated from , ,a b and c by , ,X Y and 
Z respectively: show that the most probable values of the sides are (1 ), (1 ),a x b y  and 
(1 )c z , where , ,x y z are given by equations below,

where  is the area of the triangle, and the probable error (take as meaning the standard 
deviation) of a measurement of length is supposed to be l times that of a measurement of 
angle:-

2
4 2 2 2 2 4 2 2 2 2 4 2 2 2 2

2

2 2 2 2 2 2 2

2
4 2 2 2 2 4 2 2 2 2 4 2 2 2 2

2

2 2 2 2 2 2

3 ( ) 8 ( ) 8 ( ) 8

2 2 ( ) ( ) ,

( ) 8 3 ( ) 8 ( ) 8

2 ( ) 2 (

aa b c x c a b y b c a z
l

a X c a b Y b c a Z

bc a b x b c a y a b c z
l

c a b X b Y a b

 
                     

 
         

 
                    

 

       2

2
4 2 2 2 2 4 2 2 2 2 4 2 2 2 2

2

2 2 2 2 2 2 2

) ,

( ) 8 ( ) 8 3 ( ) 8

2 ( ) ( ) 2 ,

c Z

cb c a x a b c y c a b z
l

b a c X a b c Y c Z

  
 

                    
 

         

Comments:- x, y and z should be taken as very small,  is the area of the triangle 
calculated from a,b,c and the term ‘probable error’ should be taken as ‘standard 
deviation’ although the term ‘standard deviation’ was not coined by Karl Pearson 
(who sat the above examination in 1879)  until 1893.

Solution by Jovan Jevtic

In the interest of clarity, we introduce the column vectors:
(1 ) ( )

, , , ( ) (1 ) ,   ( ) ( )
(1 ) ( )

a A X a x x
a b A B X Y a x b y x x

c C Z c z x


 



         
                       
                  


      


, (15.1)

Where a,b,c are the measured sides and A,B,C are the measured angles facing the sides 
, ,a b c , respectively. Given a , x defines a new triangle whose sides we denote by ( )a x 

and whose angles (calculated from ( )a x 
) we denote by ( )x

 
. The problem then reduces to 

the minimization of the error norm:
2

2

2 2

( ) ( )
minimum

a

x A a x a





 

 
 

    

(15.2)
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with respect to x . The error norm (15.2) is suitable for combining the results of two 

statistically independent measurements, A


and a , whose variances, 2
 and 2

a are 

different. From the problem statement: a l   and (0) X  
 

, so that (15.2)
becomes:

2 2
2

1( ) (0) ( ) minx X a x a
l

     
    

. (15.3)

Small corrections. Consider first the angle ( )x 
. From the cosine theorem:

2 2 2 2 2 2(1 ) (1 ) (1 )cos ( )
2 (1 )(1 )

b y c z a xx
bc y z


    


 


. (15.4)

Expanding into a Taylor series around 0x  :

   
2 2 2 2 2 2 2

2sin (0) ( ) (0)
2 2

a c a b b c ax x y z x
bc bc bc

   
   

       
 

. (15.5)

After multiplying by 2bc and noting that the calculated (from a,b,c) area equals 
1
2 sin (0)bc   :

  22 2 2 2 2 2 24 ( ) (0) 2 ( ) ( ) ( ).x a x c a b y b c a z x           
 

(15.6)

Similarly for ( )x 
and ( )x 

. For | | 1x  , the results may be summarized as follows:

 

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2
4 ( ) (0) , 2 .

2

a c a b b c a
x x c a b b a b c

b a c a b c c
 

    
 

         
     

A A   where: (15.7)

Minimization. In the light of (15.7), the error norm (15.3) reads:
22 2

2

164 ( ) minimumx X a x a
l
      A

   
, (15.8)

or, in terms of matrix and vector elements:

 
2 23 3 3

2
2

1 1 1

164 minimumij j i i i
i j i

A x X a x
l  

  
    

 
   . (15.9)

To minimize, we require / 0kx   for 1, 2,3k  :
23 3

2
2

1 1

23 3 3 3
2

2
1 1 1 1

23 3 3
2

2
1 1 1

164 0,

164 0,

16 4 .

ij j i ik k k
i j

ij ik j ik i k kj j
j i i j

ij ik k kj j jk j
j i j

A x X A a x
l

A A x A X a x
l

A A a x A X
l





 

   

  

  
    

 


   

 
   

 

 

  

 

(15.10)

Dividing by 2 and noting from (15.7) that ij jiA A , (15.10) reduces to:
2

2
2 2

2
2

0 0
1 8 2 , where: 0 0 .
2

0 0

a
x X b

l
c

 
  

        
   

 

A D A D


(15.11)
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We use (15.7) to find the square of the matrix A . For example:
4 4 4

2 4 4 2 2 4 2 2 2 2 2 2 2

11 12

1 1 3 33 2 , .
2 2 2

a b ca b b c c a c a b b c               
   

A A (15.12)

Finally, we recall that the area of a triangle of sides , ,a b c is given by:

2 2 2 2 2 2 2 2 2 2 2 21 ( ) ( ) ( )
4

a b c a b c a b c a b c          (15.13)

which may be used in (15.12) to show that (15.11) is identical to the problem statement:     

 
2 222 4 2 2 2 2 4 2 2 2 2

2 2
1211

1 8 8 13 , ( ) 8 ,
2 2

a b c a c a b
l l

                  
A D A (15.14)

and similarly for the remaining matrix elements, thus completing the proof. 

Actual Marks awarded by Clerk Maxwell to the Candidates

It is clear that the paper was too difficult for Lewis and Bell!

Question Marks Sum
Marks 
of Qn.

Attempts Hill
(5W)

Wallis
(6W)

Pearson
(3W)

Bell
(8W)

Walker
(2W)

Allen
(SW)

Gunston
(4W)

Lewis
(24W)

1 10 40 4 10 10 10 10
2a 20 40 2 20 20
2b 40 0
3a 50 200 4 50 50 50 50
3b 25 0 0
4 60 120 2 60 60
5 50 0
6 40 200 5 40 40 40 40 40
7 60 120 2 60 60

8a 30 90 3 30 30 30
8b 40 0
9a 10 0
9b 30 30 1 30
10 50 150 3 50 50 50

11a 20 100 5 20 20 20 20 20
11b 30 30 1 30
12 30 120 4 30 30 30 30
13 60 120 2 60 60
14 50 50 1 50
15 50 100 2 50 50

Total
Marks

755 210 240 250 70 220 240 220 60

Attempts 7 5 6 3 5 7 6 2


